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Abstract

Alfred the robotwon first placein the Hors d’Oeuvres
Anyone?eventandalsoreceved an award for the best
integratedeffort at the 1999 American Associationof

Artificial Intelligence robot competition. The three
uniquefeaturesthat Alfred displayedwere: the ability

to nudgehis way througha crowd to cover alarge serv-
ing area,a strongpersonality--thabf a properBritish

butler, andthe ability to recognizepeoplehe hadsened

before.This paperdescribeghe integratednavigation,

natural languageprocessing,and vision systemthat
enabled these capabilities.

1 Intr oduction and task definition

The American Association of Artificial Intelli-
gence(AAAI) holds a national robot competition at
their annual conference. This competition draws
schoolsfrom around the country and the event is
judged by researcherand academicsn the fields of
artificial intelligenceandrobotics.This years competi-
tions included the Hors D’oeuvres Anyone? event
which requiredrobotsto sene horsd’oeuvresto con-
ferenceattendeeduring the main conferencerecep-
tion. The primary objective of this event wasto have
therobotsunambiguouslylemonstraténteractionwith
the spectatorsTo evaluatethe event, the judgeslooked
atnot only how therobotsdid duringthefinal roundat
thereceptionput alsointeractedwith therobotsduring
apreliminaryround.Thisinitial roundgivesthejudges
a chanceto systematicallytestthe full capabilitiesof
each entrant in a more controlled setting.

In 1999, this eventwas held at the OrlandoCon-
vention Center The area where the robots were
requiredto sene was extremely large--approximately
45mx 45m, andthe ceilingswere 15-20mhigh. There
wasno sounddampeningnaterialon thewalls, ceiling,
or floor. The illumination for the event consistedof
directionallights shiningdown on the floor, that alter-
natedbetweerf'cool” and“warm” colorsevery 5m. All
of thesefactorsmadethe eveningeventextremelychal-
lenging for vision sensing and speech interaction.

Alfred the robot was designedand constructed
duringa 10 weekperiodprior to the competitionby the
authorsall of whomwereeitherfaculty or studentsat
SwarthmoreCollege. Two studentsworked primarily

on the speechnteraction,threeon the visual sensing,
andtwo on navigation andintegration. Completeinte-
gration of the parts took four weeksto accomplish
Prior to the competitionwe had one “live” test run
which gave us a benchmarkand allowed us to focus
our efforts on particularareashighlightedby the test.
One of the major lessonsof this experiencewas the
needto beyin integrationevenearlierin orderto have a
base platform from which toavk.

Theremainderof this paperoutlinesAlfred’s tech-
nical details.Section2 highlightsthe physical design,
section 3 the navigation and decision-makingalgo-
rithms, section4 the speechinteraction,and section5
thevision system Section6 presentanoverall discus-
sionandfuturedirectionsof researctanddevelopment.

2 Physical design

The heart of Alfred’s physical design was a
NomadSuperScoutll Mobile Robot,manufcturedoy
Nomadics,Inc. The baseconfigurationcomeswith a
233 MHz Pentiumll processarbuilt-in sound,and a
Captivator video frame grabber The computerruns
Linux--Red Hat 6.0 distribution--and links to the
robot’s microcontroller through the serial port.

Ontop of thebaserobotwe built a penguin-shaped
structureout of plywood, screen,and black & white
felt. A shelf inside the penguin held the amplified
spealers, microphonepower supply andthe interface
box for thenudgingdevice. Alfred appearsn Figurel.

The sensorsattachedo Alfred includeda Costar
CCD color camerawith an 8mm lens, a Shure
MX418S supercardioidhighly uni-directional)goose-
neckmicrophoneandarigid aluminumbumperwith 5
contact switches for sensingfeet. We installed the
bumperon the front of the robotat a heightof 4cm off
the groundand interfacedthe contactswitchesto the
computer through the parallel port. Note that the
bumper also kept the robot from pitching forward as
there is no support wheel in front of the robot.

The othermodificationwe madewasto adda fan
to the top of the Scoutbaseto lower the internaltem-
perature.This proved to be essentialto running the
robot under the load weagg it.



Figure 1.Alfred the Robot (left), and Alfred ser
AAAI Conf erence Reception (right)

3 High-level control and navigation

It wasour taskto develop a softwarearchitecturethat,
basedupon sensordata gatheredfrom its environment,
would respondin an intelligent manner The goal wasto
createan autonomousystemthat would sene horsd’oeu-
vreswhile covering a large areaof the room, and seeking
out and interacting with people.

The robot hadto be able to differentiatepeoplefrom
obstaclespffer food to peopleit encounteredgover awide
area,detectwhen more food was needed and navigate to
the refill station.Basedon the situationin which the robot
founditself, we wantedit to make appropriatecommentary
and engage people in some form of corversation. We
extendedthe robot-humaninteractionto include nudging
people out of the ay when thg blocked the robos path.

When choosingthe architecturefor Alfred’s behaior,
there were several possibleapproachesA commontech-
niguein mobile roboticsis to develop a subsumptiorarchi-
tecturewherea setof task-achiging behaior modulesare
constructedand layeredso that higher priority behaiors
subsumesontrol of lower priority behaiors by suppressing
their outputs[2]. Traditionally, eachbehaior modulein a
subsumptiorarchitectureis a finite statemachine(FSM).
The subsumptionstyle of architectureis quite robust and
reactsquickly to changesin the environment. However,
developmentmust be staged,starting from the simplest
behaiors and gradually adding more compleehaiors.

Due to the short time frame we had to prepare,we
choseto constructa single, high-level FSM instead.This

ving hor s d’oeuvres at the 1999

was also the techniqueusedby the 1998 contestwinner,
Rusty the B.E.A.R. from the University of North Dakota
[7]. A FSM lendsitself well to the situationof controlled
interaction for which we were deloping the robot

By integrating the componentf speechyision, and
navigation throughthe FSM, we were ableto accomplish
ourgoalof abasicservingbehaior. Uponstartup therobot
movesaway from its refill stationtoward a guidancepoint
setfor it in adwvance.Upon reachingthis point, the robot
attemptgto detectpeoplein its field of view. Whenit finds
them,it movestowardthemandengagesin corversationlf
it hasseenthe persornbeforeandrecognizeshem,therobot
acknavledgesthis. New peopleare given nicknamesthat
the robot useslater when speakingto them again. It asks
them if they would like an hors d’oeuvre, and demands
proper decorumin their reply. If necessarythe robot
avoids, ignores, or nudgespeople in order to cover a
broaderarea.Whenthe robot hassened a predetermined
numberof people,it navigatesbackto the refill stationby
looking for a landmark,askingdirections,and using dead
reckoning. After refilling, it moves back onto the floor to
continue serving at the xteurvisited guidance point.

3.1 Algorithms & theory

Navigationandmostlocalizationof therobotis accom-
plishedusingwheelencodersObstacledetectionis accom-
plished by sonarand peopleare detectedand recognized
visually. As the robot navigatesthrougha crowd, the FSM
directsits generapathtowarda ‘guidancepoint’. Thereare
threetypesof guidancepoints— generaljintermediateand
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Figure 2.The overall finite state mac hine f or the r obot. The primar y action pattern is highlighted.

imperatvve. Thegeneralguidancepointsform a patharound
aroom.They aresetfor therobotprior to initialization by a
personanddependuponthe servingervironment.Interme-
diateguidancepointsaredynamicallycalculatedduringthe
processe®f the FSM. They are usedto direct the robot
toward a certainpoint from which it canresumeits course
towardthe generalguidancepoints.Whentraveling to non-
imperative guidancepoints, the robot will stopto encage
peopleit detectsalongthe way. Imperatve guidancepoints
arepointsto which the robot moveswhile ignoring people
it meetsalong the way, and avoiding them or nudgingif

necessaryTheseguidancepoints allow the robot to move
somavhere even whenit is hemmedin by peoplethat it

would usually stop to sere. The robot avoids inanimate
objectsby testingif the thing directly in front of the robot
displays visual human characteristics.

The FSM keepstrack of the robot’s positionon a map
storedin memory Whencheckingto ensurethat the robot
coversa certainarea,the boundingbox of the pathcovered
onthemapis calculated The pixel sizeof the mapis deter-
mined by a predefinedresolution’ value which indicates
the sizein inchesof a pixel on eachside.This valuecanbe
changedin the programcode so that mapscan be highly
detailed if necessary

A diagramof theoverall FSMis givenin Figure2. The
robotbeaginsin stateStart, from whichthevisionfork is ini-
tiated. Vision processesre run independentlywith com-
mandsbeing passedo Vision from the FSM via a shared
memory structure.

From state Start the FSM goes into state
Move_Engage, in which the robot moves awvay from the
refill station,but will stopandsere ary peopleencountered
along the way (or handsthat are detectedin the serving
tray). If the robot reachests generalguidancepoint, the
FSMwill gointo stateSensewhich searchegor peopleto
sene andthengoesinto stateMove_Engge to movein the

direction of a possiblepersonwith an intermediateguid-
ance point.

Every threeminutesthe FSM checksto ensurethatthe
robotis moving outsidea certainpredeterminea@realf that
area has not been exceeded,the FSM goes into state
Move_Ignoe to navigatetoward a dynamically-determined
imperative guidancepoint that takes the robot outsideits
previous area.Uponreachingthis point, the robotre-enters
stateSense

After a sene, if the FSM detectsthat the maximum
numberof senes have beenexceeded,it goesinto state
Refillwhich usesstateMove_Ignoe to navigatebackto the
refill stationwithout engaging people.At the station, the
FSM goesinto stateWait, from which the robot can shut
down if sucha commandis issued.Otherwise,when the
tray has been refilled, the FSM goes into state
Move_Engage to move away from therefill station,andthe
cycle repeats as before.

3.2 Integrating vision, speech, and nagation

We took a practical approachto integrating the three
main component®f the robot: vision, speechand naviga-
tion. Since we did not take a reactive or behaior-based
approachto navigation, the FSM directly controlled the
navigation component. The Move Engge and
Move_lgnorestates,n particular controlledthe motion of
the robot basedon the current goal location and sensor
readings Eachof the other stateseitherrequiredthe robot
to be still, or to be moving in a particularmannes-suchas
rotating to look for the refill station.

The vision andspeeclcomponentspn the otherhand,
were developedindependentlyof the FSM and navigation,
in partbecausea modularapproachpermitsmore efficient
developmentandtesting.Both visionandspeechranassep-
arate processes--visioms a fork, and speechas a set of
independently called programs.



To engagespeechthe FSM would startthe appropriate
speechprogramand then read the resultsof that call to
determinghe spealer’'s responséf the programencagedin
recognition.This worked well becausehe speechgenera-
tion and recognitioncould not be running simultaneously
dueto conflictswith thesoundresourcesThe modularityof
this approachallowed us to test and refine each speech
interaction independently

The vision process,by contrast,was a simple state
machineof its own, runningin parallelwith the main FSM.
The FSM controlledthe vision processhy settinga com-
mandfield in a sharedmemory structure.This command
field would triggerthevision procesgo grabimage(s) gxe-
cute the requestedoperatoy and return the resultsin the
shared memory field. Some operators--lile testing for
handsin front of the camera--werdree runningandwould
continueprocessingmagesuntil told to stop.Otheropera-
tors--suchas searchingfor a badge--gecutedonly once.
Becauseof the modularity of this approachwe could run
the vision processndependentlyof the main FSM, which
facilitated deelopment and testing.

Overall,the major principle of integrationwe followed
was modularity We also gave the robot the ability to
accomplisha sequencef comple tasksby usingthe cen-
tral FSM for high-level control. The weaknessof this
approactwasthespeedandreactvity of therobotto its sur-
roundingssincethe sensingprocessestartedand stopped
basedon the FSM state. Thesegeneralobsenrations are
echoedby Brysons comparatie analysisof robotarchitec-
tures, which claims that thieshould hae:

* a modular structure,

» ameando controlactionandperceptiorsequencefor
comple tasks, and

* a means for reacting quickly to itsvmenment [3].

In responseto the weaknessef the pure FSM
approachwe have sinceevolved to a completelymodular
architecturewith sensingandactingprocessethatrun con-
tinuously in parallel with a central controller

3.3 Experiments & results

To testtheintegratedfunctioningof all elementswithin
the FSM, we put the robotinto several situationsinvolving
varying numbersof peoplewith whom the robot would
have to interact.Early in the testingwe found that vision
wasthe slowestprocesssowe coordinatedspeecho over-
lap while vision wasrunning,camouflaginghe delay Note
thata part of this delaywasdueto the factthatin mostof
the testsituationswe werelogging imagesto disk to keep
track of the accurgocof the vision processes.

We first testedthe robot underindirect naturallighting
in alargeroomcontaining?7 peoplespreadhroughout.The
robotwasableto navigateto its guidancepointsandencage
peoplealongtheway. Thesetestsdid notincludeasituation
wherethe robot was completelysurroundedy a group of

people Also, therewasnt arny backgroundhoiseto confuse
the robot’s speechrecognition. The robot achieved 70%
accurag in personrecognition,90% accurag in person
detection, and 75-85% accurag in speechrecognition
which varied from person to person.

Therobotwasalsotestedn anincandescently-litoom
with about50 people.Again, the roomwasvery quiet,and
the peoplegave therobotspacesoit could move with ease.
This testtoo was successfulhowever, as we did not log
images--loggingimagesslowed down the robot--for this
exercise, this is a purely qualitedi assessment.

The conditionsof the competitionwerequite different.
The lighting was more bluish, which dulled mary of the
colors picked up by the camera,andvaried from placeto
placeacrossthe competitionarea.ln the first round of the
competition,where only the judgesand a few onlookers
wereinvolved,therobotworked almostflawlesslyfrom the
point of view of theaudience--aain, we did notlog images
becauseof speedconsiderationsAlthough the robot was
presentedwith a larger numberof people,they were all
attentve to it and there was relatively little background
noise.The robotwasgiven plenty of roomto move, which
allowed it to naigate freely

In the secondround of the competition, during the
AAAI conferenceaeceptionjt wasmuchmoredifficult for
the robotto be successfulThe robotwasoftenhemmedn
by jostling people,causingit to rotatein circlessearching
for away out. The nudgingalgorithmturnedout to be too
nice,notsustainingts nudginglong enoughto gettherobot
out of thecircle if the peoplewerenot accommodatingAs
noted below, the worst of the robot’s problems,howvever
was backgroundnoise,which greatly inhibited the speech
recognition and corersation aspects of the interaction.

In mostof thetrial runs,navigationencounteredignif-
icanterrorsin deadreckoning,causedy wheelskidswhile
nudgingandoccasionallypumpingobjects.Obstacleavoid-
ancewas still good;therewas only one collision with an
inanimateobject. The errorsin deadreckoning, however,
were offset by the robot’s ability to find the refill station
landmark,go to it, andthenresetits world coordinatesys-
tem beforeheadingout again. This way it wasableto cor-
rect its dead re@ning errors eery 10-15 minutes.

The greatesproblemrevealedin the methodologywe
employed was that of speedof interaction.Many people
walked quickly pastthe robot and took an hors d’oeuvre
without stopping.This triggeredthe speechinteraction but
by thetime therobotspole, peoplewerealreadylong gone.
Thus, the robot would wait for an answerfrom a person
who was no longer present or willing to speak to it.

4 Speech interaction

Alfred’s speechsystemwasdevelopedprimarily to act
as the interface between human and machine. It was



<<root >> = <affirmative_1> |
<properNo> | <affirmative_2>.
<affirmative_1> = yes: 1 |
snack™ 1.

<negati ve> =no: 2.
<vernacul ar> = okay: 3 |
course™ 3| cope: 3.
<proper Yes> = ‘yes
course™ 4 | “yes™ *

sure: 3 |

please” 4.

“I'll pass thanks”: 5.

<negative> |
yeah: 1
<affirmative_2> = "“thank you very much”: 6 | “why thank you™: 6.
“why not”:
please™ 4 | “but

of course™ 4 |

<pr oper No> = “no thank you”: 5 | “I'm fine thank you”: 5 | “I'll pass™: 5 |

<vernacular> | <properYes> |

yes i really would like a tasty

3| “i guess so 3 | “of

certainly: 4 | “of

Figure 3.An example of a BNF file . This file was the grammar file f or the ser ving interaction.

throughspeechhatall the varioushumaninteractionsvere
carriedout. We decidedo augmenthisinteractionby mak-
ing it morelifelik e. As suchtheentirespeeclsystemsened
to build Alfred’s “British butler” personality Thesegoals
wereall achievedusingIBM’ s betaversionof the ViaVoice
software developmentkit (SDK) for Linux [6], and stan-
dard audio playback software that comes with Redhat
release grsion 6.0.

4.1 Speechecognition system

ViaVoice for Linux is available for public download
from IBM’ s website[6]. We hadthe choiceof usingIBM’s
speeckkit or the Centerfor Spolen LanguagdJnderstand-
ing (CSLU) speechtoolkit developedat the Oregon Gradu-
atelnstituteof Science& Technology(OGl). ViaVoicewas
chosenbecauseof its simplicity to implementand high-
level interfacethatfocusedmoreon the abstracfeaturesof
speechrecognition.Unlike CSLU, ViaVoicedid notrequire
the programmerto specify ary low-level preprocessing
techniquesof the audio file before recognitionwas per-
formed;the ViaVoice engineperformedall this preprocess-
ing. Another factor that contrituted to our choice of
ViaVoice wasthe easeof developmentof the grammatrfile.
In speectrecognitionanutterancas a streamof speectthat
represents commandA grammarffile is asetof wordsand
phrasegjovernedby rulesthatdefineall the utteranceghat
areto be recognizedat run-time.In ViaVoice therewasno
needto make additional inputs of pronunciations,since
therewas a built in dictionary of pronunciationsOn the
otherhand,CSLU requiredthis additionalinput. The major
drawvbackof ViaVoice wasthatit reliedgreatlyon the qual-
ity of the spolen utterance andthereforethe ervironment
neededo be reasonablyquiet to achiese high recognition
rates.Thiswasin partdueto thefactthatall of the prepro-
cessingvasperformedby theengineandthereforewe were
unableto modify the filters to suit our ervironment. Fur-
thermorethe ViaVoice input camedirectly from the micro-

phone and not an audio file. We obtained help in
understandinghe ViaVoice SDK from accompaniediocu-
mentation and the dgelopers at IBM.

4.2 Speech interaction method

All of the speechinteractionswere pre-definedand
basedon scriptsthat we wrote. Eachof thesescriptswas
associatedvith a stand-alonespeechprogram,andit con-
tributed to the developmentof Alfred’s personality The
stand-alongprogramshad a specifiedfinite stategrammar
(FSG)file, which containedhewordsandthe phrasedo be
recognizeddy the ViaVoicerecognitionengine. TheseFSG
fileswerethe compiledoutputof Backus-NauiForm (BNF)
files. TheseBNF files are simple, but structuredtext files,
written in a speechrecognition control language(SRCL
and pronounced-circle”). The SpeechRecognition API
Committee and Enterprise Computer Telepholy Forum
jointly developed SRCL. The generalform of a SRCL

grammar file consists of production rules in the form of (1)

< rule> = words or “phrase” Q)

The left sideof the productionrule is synorymousto a
variable nameand the right side specifiesthe individual
wordsor phraseggivenin quotes}hatareto berecognized.
An exampletaken from one of Alfred’s BNF files is given
in Figure 3. This exampleannotategachrecognizedvord
and phrasewith an integer, so that our speechprograms
could more easily parsethem.More informationon SRCL
grammarscan be found in the ViaVoice SDK documenta-
tion.

An FSGfile waswritten for eachof Alfred’s primary
interactiongncludingthe “servinginteractior, the “search
for therefill-stationinteraction"andthe“at therefill-station
interaction”. Each FSG file had mary variations of
response$o questiondike “Would you like an horsd'oeu-
vre?”and“Whereis therefill station?"We alsodevelopeda
generic FSG file to interpretyes/notype responsesThe
associateghrogramfor this FSGfile, senedto confirmout-



put from the vision system.No explicitly definedspeech
algorithmswere usedin developingtheseprogramsHow-

ever, eachspeechnteractiontreewasbasedon production
systemswith if-then-elseand casestatementspecifying

what response & made based on a recognized utterance.

Work by Clifford Nassproposesthat peopletend to
respondpsychologicallyto computerpersonalitiesin the
sameway thatthey respondo humanpersonalitieg8], we
decidedto make recordedhumanresponsedor Alfred as
opposedto using a text-to-speechsynthesizer thereby
achieving a more corvincing “human personality”.To add
to Alfred’s anthropomorphimature,we madea minimum
of five audiofiles for eachresponseand one was selected
randomlyat runtime of the speechprogram.Consequently
no two runsof the samespeechprogramwere alike, since
different audio files were played back at runtime.

4.3 Experiments & results

Testsof the speechinteractionwere quite goodin the
laboratory achieving approximatelyan 85% recognition
rate. This numbertakesinto consideratiorthe fact that all
the speeclhprogramswveredesignedo malke threeattempts
at recognition per question asled, given that the first
attemptfailed. However, this wasnot the caseat the AAAI
receptionwherethefinal roundof the horsd’oeuvrescom-
petitiontook place.Recognitionratesdroppedsignificantly
to about35% dueto the very loud backgrounchoisein the
conferencehall, in spite of the unidirectionalmicrophone
used.Anotherfactorthatmay have contritutedto this drop
wasAlfred’s onboardsoundsystem.Thebuilt-in audiosys-
tem, developedby ESSTechnologiesyas perceptiblylow
in quality comparedo the 64-bit Creative Labssoundcard
used in the laboratory

Our decisionto userecordedhumanresponsegroved
successfuland Alfred was referredto by his given name
and not treatedlike a machine.In fact, someguestspro-
ceededo talk casuallyto him asif he werea real person.
Consequentlythey talkedto himin full sentencemsteadof
the short phrasesor single words which Alfred was
designed to understand.

5 Visual sensing

5.1 Detecting confeence VIPs

With a singlecolor cameraAlfred usedblob-detection
to identify conferenceVIP’s by detectingcoloredribbons
on their badges.For example, note the ribbon hanging
belov the badgeof the personin thecenterof Figurel. The
color blob detectionprocesssearchedver an image and
comparedsingle pixels with the tarmget color, so calibration
for specific lighting conditions as necessary

5.1.1 Releant work Blob detectionis a standardaskin
vision and robotics.In a projectsimilar to ours,a NASA

mobile robot that strives to recognizefaces,Wong et. al.
[13] usedjust color informationto detectblobs. The blob
detectionsimplified the searchfor peopleby requiringpeo-
plein thetestingervironmentto weara sweatshirof a spe-
cific color The robot used a chromaticity comparison
technique to detect the color of the sweatshirt.
Chromaticityis dependenbn color and not intensity
For our ribbon detection,insteadof usingchromaticitywe
usedRGB color bounds.The reasonfor this was that the
specificrangeof target “colors” for detectionwere a non-
linear mix of intensity and brightness,since some color
bandshad greatervariation than others. Furthermore the
RGB color spaceworkedwell for this task,andwe avoided
the tra computation by not using aféifent color space.

5.1.2 Algorithms & theory The blob detectionfunction
takes as input the pixels of animage,andthe RGB color
boundsof the blob it is searchingfor. First a loop is run
throughthe pixels, countingthe numberof pixelswhichfall
within the color boundsin eachcolumnand summingthe
resultsinto bins. A window of specifiedwidth is then
scannedacrosshe bins, finding wherethe mosttarget pix-
els areat within alocalizedregion. If the resultis above a
given threshold thenthe function returnsa 1 andthe left-
mostcolumnlocationof the blob, otherwise 0 is returned.
This function is called whenthereis a persondirectly in
front of therobot. Theimageis, therefore alreadyentirely
thatof thepersonstorso.This methodis significantlyfaster
thanscanninga box acrosgheimage,becauseachpixel is
only processed once.

The RGB colorboundswveredeterminedy usingalin-
ear searchalgorithm. The programneededsesen parame-
tersfor simple blob detection,the low rangeandthe high
rangeof eachcolor bandof the tamget color, aswell asthe
cutoff threshold.The linear searchalgorithm searchegor
the specifiedhumberof iterationsover all of the parameters
oneatatime for the bestsolution,asspecifiedby anevalu-
ation function. The evaluationfunction takesasamguments
the numberof parametersandthe value of the parameters
and returns a value that should increaseas the solution
improves. A training setof twenty imagescontainingboth
positve and negative imagesis taken under the lighting
conditionsof the test site and run throughthe evaluation
function.Sincethe RGB valuesof thetargetcolor mayvary
under different lighting situations,a calibration using the
linear searchfunction should be run before detectionis
needed in a melocation.

5.1.3 Experiments & resultsOne of the biggesthurdles
of computervision with color is its dependencen illumi-
nation.As expectedthe blob detectionprocessesadto be
calibratedat the operationsite. The pink ribbon detection
was extremely accurateafter appropriatecalibration, with
no false positives, and it found all visible ribbonsin our



Figure 4images from the final r ound of the competition. The left and center ima
badg e detections, while the right-most ima

loggedimages.During the competitionwe only looked for
pink ribbonssincethe otherimportantribbon color, white,
could not be consistentlydetected Figure 4 shovs exam-
ples imagesof successfubadgedetections.Note that in
Figure4(b) the badgeis barelyvisible in the lower right of
theimage,but the systemwasstill ableto detectit because
of the lage \ertical etent.

5.2 Recognizing landmarks

WhenAlfred ran out of food onits tray, it usedvision
along with confirmationfrom the handlerto recognizea
distinctive blackandwhite landmarkplacedabore its initial
starting point to guide it back to the refill station

5.2.1 Relgant work The landmarkdetectionmethodwe
usedwasdesignedby D. Scharsteimnd A. Briggs[10] at
Middlebury College. They developeda robust algorithm
that recognizesself-similar intensity patternsthat works
undera wide rangeof viewing and lighting conditionsin
nearreal time.

5.2.2 Algorithms & theory Self-similarintensitypatterns
are basedon self-similar functions. The graph of these
functionsareidenticalto themselesscaledby a constanp
in the horizontaldirection.A propertyof self-similarfunc-
tionsis thatthey arealsoself-similarata scaleof pk, mean-
ing that the self-similar property is invariant to viewing
distance.

This methodoperateseliably on singlescanlineswith-
out ary preprocessingndrunsin nearrealtime. Sincethe
methodusessinglescanlinesit successfullyecognizeshe

landmark gen when part of the pattern is being occluded.

We useda pre-compiledprogramobtainedfrom Mid-
dletury College which takesasinput any PGM image,and
if a self-similarlandmarkis found, returnsthe pixel loca-
tions of thetwo Xs markingthe vertical heightof theright-
most strip of the landmark. After some experiments,as
describedelow, we wereableto corvertthepixel locations
to a bearingand approximatedistanceto the refill station.
We usedknowledgeof the cameras field of view to calcu-
late bearingand an empirically-calculatecequationto find

ges were successful

ge was a successful landmark detection.

the distancebasedon the vertical height of the detected
landmark.Thedistanceequatiorwasderived by taking pic-

turesof thelandmarkat known distancesandfitting a func-

tion to thedata,knowing thatthe verticalheightis inversely
proportional to distance.

5.2.3 Experiments & resultsThe landmark recognition
worked remarkablywell. In analyzingthe capabilitiesof
theself-similarpatternrecognitionprogramwe determined
thatif we usedthe8.5"x 11" patternprovided,we couldget
reliableresults--bettethan90%correctdetectiorandlocal-
ization--fromupto 10 feetaway using320x240images.To
usethis methodfor refill stationrecognition,we neededo
customizeit soit recognizedhe landmarkat least40 feet
away. Sincethe detectionof the landmarkis limited by the
numberof landmarkpixels per scanline,we doubledthe
size of the landmark and captured 640x480 grayscale
imagesfor this purposejncreasingthe detectableangeto
about 50 feet.

During the competition, the landmark detection
workedwell enoughthat,althoughsometimeghelandmark
waspartially blocked by a heador a handin theconference,
it still returnedareliablebearing asjudgedby thedirection
the robot headedafter each successfulrecognition. The
approximatedistancereturned however, wasnot asreliable
sincea few occludedpixels meantsereral feetof miscalcu-
lation. To compensatéor this, Alfred would askwhomever
was nearbyif it was at the refill station.If the reply was
negative, the robotwould repeatiooking for the landmark.
Figure 4 shovs an exampleimagefrom a successfuland-
mark detection during the final competition.

5.3 Locating people

As Alfred’s primarytaskwasto sene people hehadto
have arobust,fast,andaccuratgersondetectioralgorithm.
In addition, to make the interactionmore interestingwe
developeda short-termrecognitionalgorithmbasedn peo-
ple’s clothes.The persondetectioncombinedtwo indepen-
dentmethodsoneusedmovementdetectionthe otherused
skin-region detectioncombinedwith eye templatematch-
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ing. The combinationof thesetwo methodsprovided more
robust and accurate results than either method by itself.

5.3.1 Relgant work The humanlocatorbasedon move-
mentdetectiorwasmodeledafterthevision systemusedin
Rustythe B.E.A.R.,the 1998 horsd'oeuvresservingrobot
from the University of North Dakota [7]. We considereda
neuralnetwork-basedletectof9], but the movementdetec-
tor waschoserfor its speecandbecausét doesnotrequire
an extensve searchthrough an image. In addition, the
movement detectoris simpler since there is no explicit
training needed for this type of system.

Thepersordetectiorbasecdn skin detectioncombined
work on prefilteringimaged4], andfuzzy patternmatching
[14]. Thefuzzy patterndetectionwasusedasa fastmethod
of filtering for skin color. Thesefilteredimageswherethen
usedfor template matching similar to that describedby
Chan and Lwis [4].

5.3.2 Algorithms and theoryThe person locator based
on motionusedtwo differentmodes:generaldetectionand
close-persomletection.Both modesrequirethe robotto be
stopped,and thus are activated by the FSM only in the
appropriatestates.For general person detection, Alfred
searchedhe entire imagefor concentratednovementand
returned an approximatedistance and heading for the
movement.Three 320x240color imageswere capturedin
quick successionFor eachimage, a 3x3 Sobel operator
[11] wasappliedto the pixel valuesin orderto identify edge
pixels. Consecutie imageswere then subtractedto form
two differenceimagesthatrepresenteé@dgespresenin the
secondf thetwo imageshbut notin thefirst [5]. SeeFigure
5 for an example of the capturedand processedmages

involved in the m@ement detection system.
Then,threepassesvere madethrougheachof the dif-
ferenceémagedo determinenvhetherthereexistedlocalized
movementandto identify at whatdistanceandheadingthis
movementoccurred.n orderto improve speedAlfred cal-
culated table values for each column of the difference
imagessothatrepeatedalculationsvereeliminated.Each
passcorrespondedo an approximatedistanceaway from
therobotby runningappropriatesizeboxesover thebottom
of the image that looked for different concentrationsof
movementpixels. Thelarge box correspondetb a distance
approximately4 feet away; the mediumsize box to a dis-
tanceapproximatelyB feetaway; andthesmallbox approx-
imately 13 feet away. Note that a personfar away would
generallytrigger a responsefor eachbox filter. To help
selectthe appropriatedistance the large and mediumsize
boxes were broken into horizontalregions suchthat each
horizontalregion had to satisfy a certainthreshold.Thus,
thelarge box filter would only detecta personif they filled
eachhorizontalregion (i.e., the whole box). Finally, if a
humanwasdetectedn oneof the boxes,a headingwascal-
culatedbasedon the column numberin the centerof the
searchbox. Specifically we determinedexperimentallythat
the lenshad a field of view approximatelyequalto 42.74
degrees.Therefore the following equationdeterminedthe
angle from the center of the field of wi¢o the person.

heading = (columns / 2 — column number) *
(FOV / columns) (2)

Theresultingheadingis in the sameunits asthe FOV.
For Alfred’s physical setup,we used320 asthe numberof
columns,and 42.74 asthe FOV. Figure 6 showvs a person
detectedht eachof thethreedistancesndthe searchboxes



Figure6 .Distance Finder — Close size search box approximatel y 1.3m away (left), medium size search box
~2.5m away (mid dle), and far siz e search box ~4m away (right).

that were used in the detection.

The secondmode--closeperson detection--vas acti-
vatedafterdetectinganobstaclenvhich mightbeahumanto
be sened. The close-persoretectorcapturedtwo succes-
sive 240x320imagesperformededgecalculationsandcre-
ateda singledifferenceimageall in the samemannerasin
thefirst phaseln this phasehowever, Alfred searcheanly
the centerhalf of theimageto seeif enoughmovementpix-
elswerepresento distinguishits forward obstacleasa per-
sonandnot asa staticobject. Alfred returneda true value

only if the forward obstacle displayed significant motion.

The persondetectionalgorithmbasedon color worked
in two phasesfiltering andtemplatematching.Thefiltering
passuseda trainedfuzzy histogramspecifyingthe setSkin
to filter the pixel valuesinto likely andunlikely faceloca-
tions. The templatepassconsistef oneor moreeye tem-
platesscannedver theregionsof theimageselectedn the
prefiltering stage.

To createthe fuzzy histogram we took a seriesof pic-
turesof peoplein the areawhereAlfred wasto sene, and
then editedthemto replaceall non-skincolor areasof the
picture with black. The programthen went through each
picture,usingall non-blackpixelsto generatehefuzzy-his-
togram.For all non-blackpixels the imagecolor the train-
ing program normalized them by using equation (3),

Ci
c, = —
2

where C; O { R, G, B} arethe threecolor compo-

®3)

nents found in the original 320x240 color images, and
c; U{r, g, b} arethethreenormalizedcolors.The pro-

gramthenusedther andg values(b valuesweretoo noisy)
to index into a 32x32 histogramandincrementthe appro-
priatecell. This sameproceduravasfollowedfor the entire
testsetof images.The programthenlocatedthefinal histo-
grams largestvalue, and divided eachof the cells in the
histogramby thatvalue,scalingthe histogramvaluesto the
rangef0, 1]. We canconsidettheresultinghistogramto bea

fuzzy membershigsetfor pixels belongingto the fuzzy set
Skin[14].

Oncethe Skinsetis trained,we canuseit to filter anew
imagefor skin tones.The computeraccomplishecdhis by
normalizingthe color of eachpixel usingequation(3) and
thenindexing into theappropriatecell of the Skinhistogram
to transformtheimageinto skintonemembershivalues It
thenreducedhe new imageby afactorof four in eachaxis
to speedup skin block detection.Using an appropriately
sizedblock, it locatedall potentialfaceregionsby compar-
ing the &erage skin membershiglue aginst a threshold.

If the averagewas greaterthanthe threshold the pro-
gram consideredt a possibleface and began the second
phaseof detection,templatematching. The templatewas
createdby croppingatestimagedown to ablock thesizeof
apair of eyesandthenshrinkingthemby a factorof fourin
eachaxis so that they would matchthe shrunkimage.By
runningthetemplateacrosghetop half of the hypothesized
head,the programcalculatedthe sum of the squareof the
differencesf the pixel valuesin theimageandtemplate If
thisvaluewaslessthena presethresholdthe areawascon-
sideredto be a person,andthe programreturnedthe hori-
zontal location of the person in the image.

To increasdeheaccuray of thealgorithm,we usedtwo
different head sized blocks, and two correspondingeye
templates.Using two different sized templateshelpedus
ensurethat peopleat different distancesdrom the camera
could be found reliably. Note that in this implementation
the algorithm stoppedonce it found a likely candidate,
ratherthansearchindor all possiblecandidatesin orderto
reducecomputatiortime. SinceAlfred only needednetar-
get to head twards, this decision evked well.

To combinethesetwo independenalgorithmswe used
the following rule: if only one of the two person-detection
methodgounda persontherobotwould follow thatresult,
elseif both of the two methodsfound a person,then the
robot would usethe face-detectiomethodasit tendedto
give amoreaccuratéheading As thetwo methodsarecom-
plementary--thdacedetectionwill work whena personis
standingstill, while the motion detectionwill work if the
persons faceis not detectable--thicombinationprovided



Figure 7 .Person Recognition — Original image (far left), calculated texture image (left), texture band corre-

sponding to edg e orientation (mid dle), te xture band corresponding to edg
and te xture band corresponding to edg

better performance than either method by itself.

5.3.3 Experiments and esultsDuring the final round of
the competition Alfred loggedimagesfor a 15-20minutes
portion of its time serving in the conferencehall. This
involved approximatelyeight interactions.The movement-
basedpersonlocatorloggeda total of 15 images,correctly
detectinga personat a proper distanceand heading 12
times; correctly detectinga personat animproperdistance
and headingl time; incorrectly detectinga personl time
whenno personexistedin theimage;andnot detectingone
personwhenit shouldhave. Theresultwasa successateof
80%. The close personidentifier logged 31 total images,
correctly identifying the forward obstacleas a person22
times and incorrectly identifying it as a person9 times.
Thus, the succesgate for the close-humandetectorwas
approximately71%. (Note, the close-persortdetectoronly
logged an image upon a detecting a person.)

As regardsthe histogram-basedetectionjn the Swar-
thmore Engineeringbuilding wherethe algorithmwas ini-
tially tested,it performedsuccessfullyover 90% of the
time. Upon arriving at the robotics competition,however,
thesystemexperiencedseveraldifficulties. First, the creme-
coloredwalls weresimilar enoughto skin toneto appeaiin
the probability histogram.This problemwas compounded
by the lights in the corvention centerwhich castshadavs
on the walls that could fool the eye templateat certaindis-
tancesAlso, the corventioncenterighting usedlight bulbs
with two differentspectrumghat alternatedn their cover-
ageof theroom. Thewide variancebetweenthe spectrums
of the differenttypesof light would throw off the person
detectionunlessthe histogramwastrainedwith alargedata
set. We took over 50 training imagesin a variety of loca-
tions aroundthe convention centerin order to provide a
robust training set for the fuzzy histogram. When we
logged imagesin the final round of judging, the robot
detectedfour different people using the histogram-based
skin detectionalgorithm. Of thesefour, threewere correct
detectionswhile the fourth wasawall, for a successateof

e magnitude (right),
e density (far right).

75%. The small numberof detectionswvas dueto the fact
thatwhenAlfred waslogging imagesfewer peoplewereat
the reception and paying attention to the robots.

5.4 Recognizing people

Color andtexture histogrammatchingwas chosenfor
personrecognition,usingthe standarchistogrammatching
criteria describedin [12]. Alfred’s recognition system
focusedon the color andtexture of clothing,asthe physical
placementbf the cameraallowed Alfred’s field of view to
seeonly the torsoportion of a persononcethe personwas
conversingwith therobot. We decidedo usebothcolorand
textureto increasahe sizeof the searchspacesincewe had
to dealwith arbitrary colors andtextures,unlike the work
describedin [13] where peopleof interestwore specific,
differentiable colors.

5.4.1 Algorithms & theory Alfred attemptedrecognition
wheneer he enteredthe Servebehaior of the FSM and
subsequentlgetecteda closepersonAlfred capturedasin-
gle 240x320imageand croppedthe imageto include only
the middle third sothatextraneousolorscorrespondindo
theervironmentsurroundinghe persornof interestwerenot
includedin theimageusedfor processingA textureimage
was createdfrom the RGB imagebasedon threedifferent
propertiesof calculatededgesin the color image.The red
bandof thetextureimagecorrespondetb edgeorientation,
in which orientationsfrom 0 to 180 degreeswereassigned
valuesfrom 0 to 255accordingly Similarly, the greenband
of the texture image correspondedo the amountof con-
trast,which is characterizedby edgemagnitudesLast,the
blue bandcorrespondedo coarsenessyhich is definedby
edgedensity or the numberof surroundingedgepixelsin a
5x5 area.Togetherthey createanimagewith RGB values
that can be manipulatedusing histogrammatchingin the
samemannerasthe original color image.Exampletexture
images are shan in Figure 7.

The three-dimensionahistogramsare comparedby
addingto a runningtotal for eachcomparisonEachaxis,



red,greenandbluearedividedinto 8 buckets,sothatthere
are512bucketsin eachhistogram Every pixel in the RGB

imageis put into a bucket correspondingo the amountof

red, greenand blue it contains.A histogramcomparison
consistsof comparingeach of the buckets to the corre-
spondingbucket in the other histogramand adding the
lower of the two valuesto the total. The higher the total

value, the closer the match.

The comparisortook placeby dividing both the origi-
nal colorimageandthe calculatedtexture imageinto three
equalhorizontalregionsto distinguishdifferentareasf the
torso. In total, eachpersonis definedby six histograms
which are stored in a dynamically-createddatabaseto
which Alfred addsthroughouthetime heis serving.When-
ever a personis sened, Alfred goesthroughthe samepro-
cessof capturingtheir image,creatingthe six histograms,
andthensequentiallycomparingthe histogramso all those
currentlyin the databaseAlfred returnsthe bestmatchand
a level of certaintyasto whetherhe believes that he has
senedthat personbefore.Threelevels wereused:0 meant
no bestmatchwas found, 1 meantan unsurematchwas
found, and 2 meant a confident matcisviound.

5.4.2 Experiments & resultsA testrun for the recogni-
tion systemconductedbeforethe preliminaryroundof the
competitionyielded the following resultson 7 subjects,
with atotal of 20 testpicturestaken; Alfred determinedhe
correct best match 13 times; an incorrect best match 2
times; correctly found no good match 1 time; and incor-
rectly found no bestmatch4 times. Thus, the successate
for therecognitionsystemwas70%. It shouldbe notedthat
in this testthe subjectswere all aware of whenthe Alfred
was capturing test images. This allowed Alfred to take
accurateémagerepresentationsf the subjectswhich was
not alwayseasyto accomplishin the dynamicervironment
of the competitiors final round.

During the preliminary judging round, the robot cor-
rectly identified the one judge who interactedwith Alfred
twice. Likewise, eachof the otherjudgesreceived a unique
namefrom the robot. Alfred also correctly identified the
wall twice whenpeoplemoved out of the cameras field of
view as Alfred took their picture.

In the final round, most peopleinteractingwith the
robotseemedo avoid the cameraThus,Alfred took mary
picturesof thewall andclassifiedhemasoneof two labels.
It did correctlyidentify two of therobotteammembersvho
stooddirectly in front of the robot. However, it alsoincor-
rectly mistook one memberof the audiencefor another
becauseéboth were wearingsimilarly coloredand textured
shirts.Sincethe robotaskswhetherit got the identification
correctthisactuallygave it achanceto beapologeticabout
the mistalk.

6 Future directions

6.1 Navigation and integration

Althoughthe Finite StateMachineworked well, in the
future a less-rigid model would be better A subsumption
architecturavould enabletherobotto exhibit a muchmore
dynamicsetof behaiors thatcouldrespondnorefluidly to
events (such as being trappedin a group of people).
Although this approachwill probablyrequiremore devel-
opment time, we behe it will be worth the efort.

6.2 Speech and personality

Thereare several modificationsto the speechand per-
sonality systemthat we want to implementprior to next
years competition. First, we intend to implement some
methodof noisecancellationperhapshy usingan adaptve
noise cancellation(ANC) filter [1]. Adaptie filters allow
only the desiredsignalto be processe@nd are constantly
self-updatingto accountfor ervironmentalchanges.Two
algorithmsthat can be usedto implementadaptve filters
areleastmeanssquaregLMS), whichis robustandeasyto
implement,andthe recursve leastsquaregRLS), which is
fasterbut its corvergenceis not reliable. Two microphones
working simultaneoushareusedin ANC; oneis unidirec-
tionalwhile theotheris omni-directional The noiseinputis
from the omni-directionalmicrophoneand this signal is
passedo the adaptve filter. The unidirectionalmicrophone
would thenbeusedto recordthe subjects utterancesndan
adaptie noise cancellationis performedon it with the
adaptve filter. The error signal or noise is thus rerad.

A secondmodification that we intend to implement
next yearis to enablethe speectprocessingystemo adapt
to a situation. If thereis a lot of backgroundnoise, for
example,Alfred might listen lessandjust make one-sided
corversation.

Finally we also intend to implement some auditory
spealker-recognitionfeaturesto supplementhe visual per-
son recognition output from the vision system.A crude
implementationof this would be to have eachguestsay a
particularphrasethe first time we meetthem, and extract
uniquefeaturesfrom their speechwaveform thatwould be
storedas their voice template.When vision reportslater
thata persorhasbeenrecognizedve would confirmthis by
askingthe personto repeatthe samephraseagain, to carry
out the template recognition.

6.3 \ision system

The high-level vision processingwas relatively accu-
rate,but wasoftennotfastenoughto beeffective in therap-
idly-changing ervironment experienced in a crowvded
exhibition hall. A persondetectedat onetime may move to
a completelydifferentlocationby the time that Alfred pro-
cessedhe image information and navigatesto the calcu-
lated destination. Similarly, the timing involved in



capturingimagesto be usedin the recognitionsystemwas
vital in orderto be accuratelyassessingnly thosecolors
andtexturesassociatedvith the personandnotthoseasso-
ciatedwith the backgroundof the exhibition hall. There-
fore, a more useful systemwould have the ability to track
peoplein realtime sothatonly relevantinformationis pro-
cessedand updateddynamically along with the changing
behaior of the humansto be sened. Overall, the system
wasvery reliableandperformedwell in smaller morecon-
trolled ervironments.In order to make the systemmore
robust, a methodfor continually updatingthe information
andfor properlyseggmentingtheimageto includeonly rele-
vant information must be added.

With respecto the blob detection the color basedbin
countermethodis a fastandreliable methodof blob detec-
tion in ahomogeneouslumination ernvironment.TheRGB
boundis suitablefor bright colors saturatedn one of the
colorbandshut if detectiorof “mixed” colorsis neededan
approachusing histogrammatchingwould be more appro-
priate.Theuseof self-similarlandmarkgurnedoutto bean
excellentchoice,andfuture work may wantto incorporate
the useof bar codesto provide more specificnhavigational
information [10].

Finally, the fuzzy histogram-basednethod of face
detectionturnedout to be a good choice. Futurework in
this areawill beto combinethis prefilter with active track-
ing techniquesand better structural matching techniques
than a simple template.

6.4 New capabilities

Basedon our competitionexperienceand our experi-
encewith Alfred in avariety of situationsthereareatleast
three new capabilitiesthat we believe a truly successful
waiter robot needsto possessandwhich will be the main
focus of our wark for the 2000 competition.

Thefirst of theseis the ability to track a personthatit
trying to sene from atleast4-5 metersaway. This ability is
necessaryn orderto avoid the situationwherethe robot
headsin a direction,only to find thatthereis no onethere
whenit arrives. It would also enablethe robot to demon-
strate dynamic adaptability to its\éronment.

The secondnew ability is that the robot needsto be
ableto adaptto the sensomoiselevelsin its ervironment,
particularlywith regardto speechAs notedabove, a robot
waiter needsto know both whenit canbe understoodand
whenit canunderstandthers.Only thencanit derive an
appropriate interaction for avgin situation.

Finally, a robot waiter needsto display more biomi-
metic behaior--mimicing human reactions physically--
than Alfred could. Small characteristicsuchas eyes that
track the personbeing sened, the ability to raisea tray up
anddown, or the ability to turnits headin responseo stim-
uli would make the robot’s interaction more natural and
endav it with more perceved intelligence.Someof these

capabilitiesappearedn theearly stagesatthe 1999compe-
tition, but bringingthemtogetherinto a single,robustrobot
structure is the challenge of the coming year
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