
Abstract

Alfred the robot won first placein the Hors d’Oeuvres
Anyone?event andalsoreceived an award for the best
integratedeffort at the 1999 AmericanAssociationof
Artificial Intelligence robot competition. The three
uniquefeaturesthat Alfred displayedwere: the ability
to nudgehis way througha crowd to cover a largeserv-
ing area,a strongpersonality--thatof a properBritish
butler, andtheability to recognizepeoplehehadserved
before.This paperdescribesthe integratednavigation,
natural languageprocessing,and vision system that
enabled these capabilities.

1 Intr oduction and task definition
The American Association of Artificial Intelli-

gence(AAAI) holds a national robot competitionat
their annual conference. This competition draws
schools from around the country, and the event is
judgedby researchersand academicsin the fields of
artificial intelligenceandrobotics.Thisyear’scompeti-
tions included the Hors D’oeuvres Anyone? event
which requiredrobotsto serve horsd’oeuvresto con-
ferenceattendeesduring the main conferencerecep-
tion. The primary objective of this event was to have
therobotsunambiguouslydemonstrateinteractionwith
thespectators.To evaluatetheevent,thejudgeslooked
at not only how therobotsdid duringthefinal roundat
thereception,but alsointeractedwith therobotsduring
apreliminaryround.This initial roundgivesthejudges
a chanceto systematicallytest the full capabilitiesof
each entrant in a more controlled setting.

In 1999,this event washeld at the OrlandoCon-
vention Center. The area where the robots were
requiredto serve was extremely large--approximately
45mx 45m,andtheceilingswere15-20mhigh. There
wasnosounddampeningmaterialon thewalls,ceiling,
or floor. The illumination for the event consistedof
directionallights shiningdown on the floor, that alter-
natedbetween“cool” and“warm” colorsevery5m.All
of thesefactorsmadetheeveningeventextremelychal-
lenging for vision sensing and speech interaction.

Alfred the robot was designedand constructed
duringa10weekperiodprior to thecompetitionby the
authors,all of whomwereeitherfacultyor studentsat
SwarthmoreCollege. Two studentsworked primarily

on the speechinteraction,threeon the visual sensing,
andtwo on navigation andintegration.Completeinte-
gration of the parts took four weeks to accomplish
Prior to the competitionwe had one “li ve” test run
which gave us a benchmarkand allowed us to focus
our efforts on particularareashighlightedby the test.
One of the major lessonsof this experiencewas the
needto begin integrationevenearlierin orderto havea
base platform from which to work.

Theremainderof thispaperoutlinesAlfred’s tech-
nical details.Section2 highlights the physical design,
section 3 the navigation and decision-makingalgo-
rithms, section4 the speechinteraction,andsection5
thevision system.Section6 presentsanoverall discus-
sionandfuturedirectionsof researchanddevelopment.

2 Physical design
The heart of Alfred’s physical design was a

NomadSuperScoutII Mobile Robot,manufacturedby
Nomadics,Inc. The baseconfigurationcomeswith a
233 MHz PentiumII processor, built-in sound,and a
Captivator video frame grabber. The computerruns
Linux--Red Hat 6.0 distribution--and links to the
robot’s microcontroller through the serial port.

Ontopof thebaserobotwebuilt apenguin-shaped
structureout of plywood, screen,and black & white
felt. A shelf inside the penguin held the amplified
speakers,microphonepower supply, and the interface
box for thenudgingdevice.Alfred appearsin Figure1.

The sensorsattachedto Alfred includeda Costar
CCD color camera with an 8mm lens, a Shure
MX418Ssupercardioid(highly uni-directional)goose-
neckmicrophone,anda rigid aluminumbumperwith 5
contact switches for sensingfeet. We installed the
bumperon thefront of therobotat a heightof 4cmoff
the groundand interfacedthe contactswitchesto the
computer through the parallel port. Note that the
bumperalso kept the robot from pitching forward as
there is no support wheel in front of the robot.

The othermodificationwe madewasto adda fan
to the top of the Scoutbaseto lower the internaltem-
perature.This proved to be essentialto running the
robot under the load we gave it.
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3 High-level control and navigation
It wasour taskto developa softwarearchitecturethat,

basedupon sensordata gatheredfrom its environment,
would respondin an intelligent manner. The goal was to
createanautonomoussystemthatwould serve horsd’oeu-
vreswhile covering a large areaof the room, andseeking
out and interacting with people.

The robot had to be able to differentiatepeoplefrom
obstacles,offer food to peopleit encountered,cover a wide
area,detectwhen more food was needed,and navigate to
the refill station.Basedon the situationin which the robot
founditself, we wantedit to make appropriatecommentary
and engage people in some form of conversation. We
extendedthe robot-humaninteractionto include nudging
people out of the way when they blocked the robot’s path.

Whenchoosingthe architecturefor Alfred’s behavior,
therewere several possibleapproaches.A commontech-
niquein mobileroboticsis to developa subsumptionarchi-
tecturewherea setof task-achieving behavior modulesare
constructedand layeredso that higher priority behaviors
subsumecontrolof lower priority behaviors by suppressing
their outputs[2]. Traditionally, eachbehavior modulein a
subsumptionarchitectureis a finite statemachine(FSM).
The subsumptionstyle of architectureis quite robust and
reactsquickly to changesin the environment. However,
developmentmust be staged,starting from the simplest
behaviors and gradually adding more complex behaviors.

Due to the short time frame we had to prepare,we
choseto constructa single, high-level FSM instead.This

was also the techniqueusedby the 1998 contestwinner,
Rusty the B.E.A.R. from the University of North Dakota
[7]. A FSM lendsitself well to the situationof controlled
interaction for which we were developing the robot

By integrating the componentsof speech,vision, and
navigation throughthe FSM, we were able to accomplish
ourgoalof abasicservingbehavior. Uponstartup,therobot
movesaway from its refill stationtoward a guidancepoint
set for it in advance.Upon reachingthis point, the robot
attemptsto detectpeoplein its field of view. Whenit finds
them,it movestowardthemandengagesin conversation.If
it hasseenthepersonbeforeandrecognizesthem,therobot
acknowledgesthis. New peopleare given nicknamesthat
the robot useslater when speakingto them again. It asks
them if they would like an hors d’oeuvre, and demands
proper decorum in their reply. If necessary, the robot
avoids, ignores, or nudgespeople in order to cover a
broaderarea.When the robot hasserved a predetermined
numberof people,it navigatesbackto the refill stationby
looking for a landmark,askingdirections,andusingdead
reckoning. After refilling, it moves back onto the floor to
continue serving at the next unvisited guidance point.

3.1 Algorithms & theory
Navigationandmostlocalizationof therobotis accom-

plishedusingwheelencoders.Obstacledetectionis accom-
plishedby sonarand peopleare detectedand recognized
visually. As the robot navigatesthrougha crowd, the FSM
directsits generalpathtowarda ‘guidancepoint’. Thereare
threetypesof guidancepoints– general,intermediate,and

Figure 1.Alfred the Robot (left), and Alfred ser ving hor s d’oeuvres at the 1999
AAAI Conf erence Reception (right)



imperative.Thegeneralguidancepointsform apatharound
a room.They aresetfor therobotprior to initializationby a
personanddependupontheservingenvironment.Interme-
diateguidancepointsaredynamicallycalculatedduringthe
processesof the FSM. They are usedto direct the robot
toward a certainpoint from which it canresumeits course
towardthegeneralguidancepoints.Whentraveling to non-
imperative guidancepoints, the robot will stop to engage
peopleit detectsalongtheway. Imperative guidancepoints
arepointsto which the robot moveswhile ignoringpeople
it meetsalong the way, and avoiding them or nudging if
necessary. Theseguidancepointsallow the robot to move
somewhereeven when it is hemmedin by peoplethat it
would usually stop to serve. The robot avoids inanimate
objectsby testingif the thing directly in front of the robot
displays visual human characteristics.

TheFSM keepstrackof the robot’s positionon a map
storedin memory. Whencheckingto ensurethat the robot
coversa certainarea,theboundingbox of thepathcovered
on themapis calculated.Thepixel sizeof themapis deter-
mined by a predefined‘resolution’ value which indicates
thesizein inchesof a pixel on eachside.This valuecanbe
changedin the programcodeso that mapscan be highly
detailed if necessary.

A diagramof theoverallFSMis givenin Figure2. The
robotbeginsin stateStart, from which thevision fork is ini-
tiated.Vision processesare run independently, with com-
mandsbeingpassedto Vision from the FSM via a shared
memory structure.

From state Start, the FSM goes into state
Move_Engage, in which the robot moves away from the
refill station,but will stopandserveany peopleencountered
along the way (or handsthat are detectedin the serving
tray). If the robot reachesits generalguidancepoint, the
FSM will go into stateSense, which searchesfor peopleto
serve andthengoesinto stateMove_Engage to move in the

direction of a possiblepersonwith an intermediateguid-
ance point.

Every threeminutes,theFSMchecksto ensurethatthe
robotis moving outsideacertainpredeterminedarea.If that
area has not been exceeded,the FSM goes into state
Move_Ignore to navigatetowarda dynamically-determined
imperative guidancepoint that takes the robot outsideits
previousarea.Uponreachingthis point, therobot re-enters
stateSense.

After a serve, if the FSM detectsthat the maximum
numberof serves have beenexceeded,it goesinto state
Refill which usesstateMove_Ignore to navigatebackto the
refill stationwithout engaging people.At the station, the
FSM goesinto stateWait, from which the robot can shut
down if sucha commandis issued.Otherwise,when the
tray has been refilled, the FSM goes into state
Move_Engage to move away from therefill station,andthe
cycle repeats as before.

3.2 Integrating vision, speech, and navigation
We took a practicalapproachto integrating the three

main componentsof the robot: vision, speech,andnaviga-
tion. Since we did not take a reactive or behavior-based
approachto navigation, the FSM directly controlled the
navigation component. The Move_Engage and
Move_Ignorestates,in particular, controlledthe motion of
the robot basedon the current goal location and sensor
readings.Eachof the otherstateseitherrequiredthe robot
to be still, or to be moving in a particularmanner--suchas
rotating to look for the refill station.

Thevision andspeechcomponents,on theotherhand,
weredevelopedindependentlyof the FSM andnavigation,
in part becausea modularapproachpermitsmoreefficient
developmentandtesting.Bothvisionandspeechranassep-
arateprocesses--visionas a fork, and speechas a set of
independently called programs.

Figure 2.The overall finite state mac hine f or the r obot. The primar y action pattern is highlighted.
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To engagespeech,theFSM wouldstarttheappropriate
speechprogramand then read the resultsof that call to
determinethespeaker’s responseif theprogramengagedin
recognition.This worked well becausethe speechgenera-
tion and recognitioncould not be running simultaneously
dueto conflictswith thesoundresources.Themodularityof
this approachallowed us to test and refine eachspeech
interaction independently.

The vision process,by contrast,was a simple state
machineof its own, runningin parallelwith themainFSM.
The FSM controlledthe vision processby settinga com-
mandfield in a sharedmemorystructure.This command
field would triggerthevision processto grabimage(s),exe-
cute the requestedoperator, and return the results in the
shared memory field. Some operators--like testing for
handsin front of thecamera--werefreerunningandwould
continueprocessingimagesuntil told to stop.Otheropera-
tors--suchas searchingfor a badge--executedonly once.
Becauseof the modularityof this approach,we could run
the vision processindependentlyof the main FSM, which
facilitated development and testing.

Overall, themajorprincipleof integrationwe followed
was modularity. We also gave the robot the ability to
accomplisha sequenceof complex tasksby usingthe cen-
tral FSM for high-level control. The weaknessof this
approachwasthespeedandreactivity of therobotto its sur-
roundingssincethe sensingprocessesstartedandstopped
basedon the FSM state.Thesegeneralobservations are
echoedby Bryson’s comparative analysisof robotarchitec-
tures, which claims that they should have:

• a modular structure,
• ameansto controlactionandperceptionsequencesfor

complex tasks, and
• a means for reacting quickly to its environment [3].

In responseto the weaknessesof the pure FSM
approach,we have sinceevolved to a completelymodular
architecturewith sensingandactingprocessesthatrun con-
tinuously in parallel with a central controller.

3.3 Experiments & results
To testtheintegratedfunctioningof all elementswithin

theFSM, we put the robot into severalsituationsinvolving
varying numbersof peoplewith whom the robot would
have to interact.Early in the testingwe found that vision
wastheslowestprocess,sowe coordinatedspeechto over-
lap while vision wasrunning,camouflagingthedelay. Note
that a part of this delaywasdueto the fact that in mostof
the testsituationswe werelogging imagesto disk to keep
track of the accuracy of the vision processes.

We first testedtherobotunderindirectnaturallighting
in a largeroomcontaining7 peoplespreadthroughout.The
robotwasableto navigateto its guidancepointsandengage
peoplealongtheway. Thesetestsdid not includeasituation
wherethe robot wascompletelysurroundedby a groupof

people.Also, therewasn’t any backgroundnoiseto confuse
the robot’s speechrecognition.The robot achieved 70%
accuracy in personrecognition,90% accuracy in person
detection, and 75-85% accuracy in speechrecognition
which varied from person to person.

Therobotwasalsotestedin anincandescently-litroom
with about50 people.Again, theroomwasvery quiet,and
thepeoplegave therobotspacesoit couldmove with ease.
This test too was successful,however, as we did not log
images--loggingimagesslowed down the robot--for this
exercise, this is a purely qualitative assessment.

Theconditionsof thecompetitionwerequitedifferent.
The lighting was more bluish, which dulled many of the
colors picked up by the camera,and varied from placeto
placeacrossthe competitionarea.In the first roundof the
competition,where only the judgesand a few onlookers
wereinvolved,therobotworkedalmostflawlesslyfrom the
point of view of theaudience--again,we did not log images
becauseof speedconsiderations.Although the robot was
presentedwith a larger numberof people,they were all
attentive to it and there was relatively little background
noise.Therobotwasgivenplentyof roomto move, which
allowed it to navigate freely.

In the secondround of the competition,during the
AAAI conferencereception,it wasmuchmoredifficult for
the robot to besuccessful.Therobotwasoftenhemmedin
by jostling people,causingit to rotatein circlessearching
for a way out. The nudgingalgorithmturnedout to be too
nice,notsustainingits nudginglongenoughto gettherobot
out of thecircle if thepeoplewerenot accommodating.As
noted below, the worst of the robot’s problems,however
wasbackgroundnoise,which greatly inhibited the speech
recognition and conversation aspects of the interaction.

In mostof thetrial runs,navigationencounteredsignif-
icanterrorsin deadreckoning,causedby wheelskidswhile
nudgingandoccasionallybumpingobjects.Obstacleavoid-
ancewas still good; therewas only one collision with an
inanimateobject. The errors in deadreckoning, however,
were offset by the robot’s ability to find the refill station
landmark,go to it, andthenresetits world coordinatesys-
tembeforeheadingout again. This way it wasableto cor-
rect its dead reckoning errors every 10-15 minutes.

The greatestproblemrevealedin the methodologywe
employed was that of speedof interaction.Many people
walked quickly past the robot and took an hors d’oeuvre
without stopping.This triggeredthespeechinteraction,but
by thetime therobotspoke,peoplewerealreadylonggone.
Thus, the robot would wait for an answerfrom a person
who was no longer present or willing to speak to it.

4 Speech interaction
Alfred’s speechsystemwasdevelopedprimarily to act

as the interface between human and machine. It was



throughspeechthatall thevarioushumaninteractionswere
carriedout.Wedecidedto augmentthis interactionby mak-
ing it morelifelik e.As suchtheentirespeechsystemserved
to build Alfred’s “British butler” personality. Thesegoals
wereall achievedusingIBM’ s betaversionof theViaVoice
software developmentkit (SDK) for Linux [6], and stan-
dard audio playback software that comes with Redhat
release version 6.0.

4.1 Speech recognition system
ViaVoice for Linux is available for public download

from IBM’ s website[6]. We hadthechoiceof usingIBM’ s
speechkit or theCenterfor SpokenLanguageUnderstand-
ing (CSLU) speechtoolkit developedat theOregonGradu-
ateInstituteof Science& Technology(OGI). ViaVoicewas
chosenbecauseof its simplicity to implementand high-
level interfacethat focusedmoreon theabstractfeaturesof
speechrecognition.Unlike CSLU,ViaVoicedid not require
the programmerto specify any low-level preprocessing
techniquesof the audio file before recognitionwas per-
formed;theViaVoiceengineperformedall this preprocess-
ing. Another factor that contributed to our choice of
ViaVoicewastheeaseof developmentof thegrammarfile.
In speechrecognitionanutteranceis astreamof speechthat
representsacommand.A grammarfile is asetof wordsand
phrasesgovernedby rulesthatdefineall theutterancesthat
areto be recognizedat run-time.In ViaVoice therewasno
need to make additional inputs of pronunciations,since
therewas a built in dictionary of pronunciations.On the
otherhand,CSLU requiredthis additionalinput.Themajor
drawbackof ViaVoicewasthatit reliedgreatlyon thequal-
ity of the spoken utterance,andthereforethe environment
neededto be reasonablyquiet to achieve high recognition
rates.This wasin partdueto thefact thatall of theprepro-
cessingwasperformedby theengineandthereforewewere
unableto modify the filters to suit our environment.Fur-
thermoretheViaVoice input camedirectly from themicro-

phone and not an audio file. We obtained help in
understandingtheViaVoiceSDK from accompanieddocu-
mentation and the developers at IBM.

4.2 Speech interaction method
All of the speechinteractionswere pre-definedand

basedon scriptsthat we wrote. Eachof thesescriptswas
associatedwith a stand-alonespeechprogram,and it con-
tributed to the developmentof Alfred’s personality. The
stand-aloneprogramshada specifiedfinite stategrammar
(FSG)file, whichcontainedthewordsandthephrasesto be
recognizedby theViaVoicerecognitionengine.TheseFSG
fileswerethecompiledoutputof Backus-NaurForm(BNF)
files. TheseBNF files aresimple,but structuredtext files,
written in a speechrecognitioncontrol language(SRCL
and pronounced“circle”). The SpeechRecognitionAPI
Committee and Enterprise Computer Telephony Forum
jointly developed SRCL. The general form of a SRCL
grammar file consists of production rules in the form of (1)

< rule> = words or “phrase” (1)

Theleft sideof theproductionrule is synonymousto a
variable nameand the right side specifiesthe individual
wordsor phrases(givenin quotes)thatareto berecognized.
An exampletaken from oneof Alfred’s BNF files is given
in Figure3. This exampleannotateseachrecognizedword
and phrasewith an integer, so that our speechprograms
could moreeasilyparsethem.More informationon SRCL
grammarscanbe found in the ViaVoice SDK documenta-
tion.

An FSGfile waswritten for eachof Alfred’s primary
interactionsincludingthe“serving interaction,” the“search
for therefill-stationinteraction”andthe“at therefill-station
interaction”. Each FSG file had many variations of
responsesto questionslike “Would you like anhorsd'oeu-
vre?”and“Whereis therefill station?”Wealsodevelopeda
genericFSG file to interpret yes/notype responses.The
associatedprogramfor this FSGfile, servedto confirmout-

<<root>> = <affirmative_1> | <negative> | <vernacular> | <properYes> |
<properNo> | <affirmative_2>.
<affirmative_1> = yes: 1 | yeah: 1 | “yes i really would like a tasty
snack”: 1.
<affirmative_2> = “thank you very much”: 6 | “why thank you”: 6.
<negative> = no: 2.
<vernacular> = okay: 3 | sure: 3 | “why not”: 3 | “i guess so”: 3 | “of
course”: 3 | cope: 3.
<properYes> = “yes please”: 4 | “but of course”: 4 | certainly: 4 | “of
course”: 4 | “yes” “please”: 4.
<properNo> = “no thank you”: 5 | “I’m fine thank you”: 5 | “I’ll pass”: 5 |
“I’ll pass thanks”: 5.

Figure 3.An example of a BNF file . This file was the grammar file f or the ser ving interaction.



put from the vision system.No explicitly definedspeech
algorithmswereusedin developingtheseprograms.How-
ever, eachspeechinteractiontreewasbasedon production
systems,with if-then-elseand casestatementsspecifying
what response was made based on a recognized utterance.

Work by Clif ford Nassproposesthat peopletend to
respondpsychologicallyto computerpersonalitiesin the
sameway that they respondto humanpersonalities[8], we
decidedto make recordedhumanresponsesfor Alfred as
opposed to using a text-to-speechsynthesizer, thereby
achieving a moreconvincing “humanpersonality”.To add
to Alfred’s anthropomorphicnature,we madea minimum
of five audiofiles for eachresponseandonewasselected
randomlyat runtimeof the speechprogram.Consequently
no two runsof the samespeechprogramwerealike, since
different audio files were played back at runtime.

4.3 Experiments & results
Testsof the speechinteractionwerequite goodin the

laboratory, achieving approximatelyan 85% recognition
rate.This numbertakes into considerationthe fact that all
thespeechprogramsweredesignedto make threeattempts
at recognition per question asked, given that the first
attemptfailed.However, this wasnot thecaseat theAAAI
receptionwherethefinal roundof thehorsd’oeuvrescom-
petitiontook place.Recognitionratesdroppedsignificantly
to about35%dueto thevery loud backgroundnoisein the
conferencehall, in spite of the unidirectionalmicrophone
used.Anotherfactorthatmayhave contributedto this drop
wasAlfred’s onboardsoundsystem.Thebuilt-in audiosys-
tem,developedby ESSTechnologies,wasperceptiblylow
in quality comparedto the64-bit Creative Labssoundcard
used in the laboratory.

Our decisionto userecordedhumanresponsesproved
successful,and Alfred was referredto by his given name
and not treatedlike a machine.In fact, someguestspro-
ceededto talk casuallyto him asif he werea real person.
Consequently, they talkedto him in full sentencesinsteadof
the short phrasesor single words which Alfred was
designed to understand.

5 Visual sensing

5.1 Detecting conference VIPs
With a singlecolor camera,Alfred usedblob-detection

to identify conferenceVIP’s by detectingcoloredribbons
on their badges.For example, note the ribbon hanging
below thebadgeof thepersonin thecenterof Figure1. The
color blob detectionprocesssearchedover an imageand
comparedsinglepixelswith the target color, so calibration
for specific lighting conditions was necessary.

5.1.1 Relevant work Blob detectionis a standardtask in
vision and robotics.In a project similar to ours,a NASA

mobile robot that strives to recognizefaces,Wong et. al.
[13] usedjust color information to detectblobs.The blob
detectionsimplifiedthesearchfor peopleby requiringpeo-
ple in thetestingenvironmentto weara sweatshirtof a spe-
cific color. The robot used a chromaticity comparison
technique to detect the color of the sweatshirt.

Chromaticityis dependenton color and not intensity.
For our ribbon detection,insteadof usingchromaticitywe
usedRGB color bounds.The reasonfor this was that the
specificrangeof target “colors” for detectionwerea non-
linear mix of intensity and brightness,since somecolor
bandshad greatervariation than others.Furthermore,the
RGB color spaceworkedwell for this task,andwe avoided
the extra computation by not using a different color space.

5.1.2 Algorithms & theory The blob detectionfunction
takes as input the pixels of an image,and the RGB color
boundsof the blob it is searchingfor. First a loop is run
throughthepixels,countingthenumberof pixelswhich fall
within the color boundsin eachcolumnandsummingthe
results into bins. A window of specifiedwidth is then
scannedacrossthebins,finding wherethemosttargetpix-
els areat within a localizedregion. If the result is above a
given threshold,thenthe function returnsa 1 andthe left-
mostcolumnlocationof theblob, otherwise,0 is returned.
This function is called when there is a persondirectly in
front of the robot.The imageis, therefore,alreadyentirely
thatof theperson’s torso.Thismethodis significantlyfaster
thanscanninga box acrosstheimage,becauseeachpixel is
only processed once.

TheRGBcolorboundsweredeterminedby usinga lin-
ear searchalgorithm.The programneededseven parame-
ters for simpleblob detection,the low rangeand the high
rangeof eachcolor bandof the target color, aswell asthe
cutoff threshold.The linear searchalgorithm searchesfor
thespecifiednumberof iterationsover all of theparameters
oneat a time for thebestsolution,asspecifiedby anevalu-
ation function.The evaluationfunction takesasarguments
the numberof parametersandthe valueof the parameters
and returns a value that should increaseas the solution
improves.A training setof twenty imagescontainingboth
positive and negative imagesis taken under the lighting
conditionsof the test site and run throughthe evaluation
function.SincetheRGBvaluesof thetargetcolormayvary
underdifferent lighting situations,a calibrationusing the
linear searchfunction should be run before detectionis
needed in a new location.

5.1.3 Experiments & resultsOne of the biggesthurdles
of computervision with color is its dependenceon illumi-
nation.As expected,theblob detectionprocesseshadto be
calibratedat the operationsite. The pink ribbon detection
was extremely accurateafter appropriatecalibration,with
no falsepositives, and it found all visible ribbons in our



loggedimages.During thecompetitionwe only looked for
pink ribbonssincethe otherimportantribbon color, white,
could not be consistentlydetected.Figure 4 shows exam-
ples imagesof successfulbadgedetections.Note that in
Figure4(b) thebadgeis barelyvisible in the lower right of
the image,but thesystemwasstill ableto detectit because
of the large vertical extent.

5.2 Recognizing landmarks
WhenAlfred ranout of food on its tray, it usedvision

along with confirmationfrom the handlerto recognizea
distinctiveblackandwhite landmarkplacedabove its initial
starting point to guide it back to the refill station

5.2.1 Relevant work The landmarkdetectionmethodwe
usedwasdesignedby D. ScharsteinandA. Briggs [10] at
Middlebury College. They developed a robust algorithm
that recognizesself-similar intensity patternsthat works
undera wide rangeof viewing and lighting conditionsin
near-real time.

5.2.2 Algorithms & theory Self-similarintensitypatterns
are basedon self-similar functions. The graph of these
functionsareidenticalto themselvesscaledby a constantp
in thehorizontaldirection.A propertyof self-similarfunc-
tionsis thatthey arealsoself-similaratascaleof pk, mean-
ing that the self-similar property is invariant to viewing
distance.

Thismethodoperatesreliablyonsinglescanlineswith-
out any preprocessingandrunsin near-real time. Sincethe
methodusessinglescanlines,it successfullyrecognizesthe
landmark even when part of the pattern is being occluded.

We useda pre-compiledprogramobtainedfrom Mid-
dlebury Collegewhich takesasinput any PGM image,and
if a self-similar landmarkis found, returnsthe pixel loca-
tionsof thetwo Xs markingtheverticalheightof theright-
most strip of the landmark.After some experiments,as
describedbelow, wewereableto convert thepixel locations
to a bearingandapproximatedistanceto the refill station.
We usedknowledgeof thecamera’s field of view to calcu-
late bearingandan empirically-calculatedequationto find

the distancebasedon the vertical height of the detected
landmark.Thedistanceequationwasderivedby takingpic-
turesof thelandmarkat known distancesandfitting a func-
tion to thedata,knowing thattheverticalheightis inversely
proportional to distance.

5.2.3 Experiments & resultsThe landmark recognition
worked remarkablywell. In analyzingthe capabilitiesof
theself-similarpatternrecognitionprogram,wedetermined
thatif weusedthe8.5" x 11" patternprovided,wecouldget
reliableresults--betterthan90%correctdetectionandlocal-
ization--fromup to 10 feetaway using320x240images.To
usethis methodfor refill stationrecognition,we neededto
customizeit so it recognizedthe landmarkat least40 feet
away. Sincethedetectionof the landmarkis limited by the
numberof landmarkpixels per scanline,we doubledthe
size of the landmark and captured 640x480 grayscale
imagesfor this purpose,increasingthe detectablerangeto
about 50 feet.

During the competition, the landmark detection
workedwell enoughthat,althoughsometimesthelandmark
waspartiallyblockedby aheador ahandin theconference,
it still returneda reliablebearing,asjudgedby thedirection
the robot headedafter each successfulrecognition. The
approximatedistancereturned,however, wasnotasreliable
sincea few occludedpixelsmeantseveral feetof miscalcu-
lation.To compensatefor this,Alfred would askwhomever
was nearbyif it was at the refill station.If the reply was
negative, the robot would repeatlooking for the landmark.
Figure4 shows an exampleimagefrom a successfulland-
mark detection during the final competition.

5.3 Locating people
As Alfred’sprimarytaskwasto servepeople,hehadto

havearobust,fast,andaccuratepersondetectionalgorithm.
In addition, to make the interactionmore interestingwe
developedashort-termrecognitionalgorithmbasedonpeo-
ple’s clothes.Thepersondetectioncombinedtwo indepen-
dentmethods:oneusedmovementdetection,theotherused
skin-region detectioncombinedwith eye templatematch-

Figure 4Images fr om the final r ound of the competition. The left and center ima ges were successful
badg e detections, while the right-most ima ge was a successful landmark detection.



ing. Thecombinationof thesetwo methodsprovidedmore
robust and accurate results than either method by itself.

5.3.1 Relevant work The humanlocatorbasedon move-
mentdetectionwasmodeledafterthevision systemusedin
RustytheB.E.A.R., the1998horsd’oeuvresservingrobot
from the University of North Dakota [7]. We considereda
neuralnetwork-baseddetector[9], but themovementdetec-
tor waschosenfor its speedandbecauseit doesnot require
an extensive searchthrough an image. In addition, the
movement detector is simpler since there is no explicit
training needed for this type of system.

Thepersondetectionbasedonskindetectioncombined
work onprefilteringimages[4], andfuzzypatternmatching
[14]. Thefuzzy patterndetectionwasusedasa fastmethod
of filtering for skin color. Thesefiltered imageswherethen
used for templatematchingsimilar to that describedby
Chan and Lewis [4].

5.3.2 Algorithms and theoryThe person locator based
on motionusedtwo differentmodes:generaldetection,and
close-persondetection.Both modesrequirethe robot to be
stopped,and thus are activated by the FSM only in the
appropriatestates.For general person detection,Alfred
searchedthe entire imagefor concentratedmovementand
returned an approximatedistance and heading for the
movement.Three320x240color imageswerecapturedin
quick succession.For each image, a 3x3 Sobel operator
[11] wasappliedto thepixel valuesin orderto identify edge
pixels. Consecutive imageswere then subtractedto form
two differenceimagesthat representededgespresentin the
secondof thetwo imagesbut not in thefirst [5]. SeeFigure
5 for an example of the capturedand processedimages

involved in the movement detection system.
Then,threepassesweremadethrougheachof thedif-

ferenceimagesto determinewhetherthereexistedlocalized
movementandto identify at whatdistanceandheadingthis
movementoccurred.In orderto improve speed,Alfred cal-
culated table values for each column of the difference
imagesso that repeatedcalculationswereeliminated.Each
passcorrespondedto an approximatedistanceaway from
therobotby runningappropriatesizeboxesover thebottom
of the image that looked for different concentrationsof
movementpixels.Thelargebox correspondedto a distance
approximately4 feet away; the mediumsizebox to a dis-
tanceapproximately8 feetaway;andthesmallboxapprox-
imately 13 feet away. Note that a personfar away would
generally trigger a responsefor eachbox filter. To help
selectthe appropriatedistance,the large andmediumsize
boxes were broken into horizontal regions suchthat each
horizontalregion had to satisfy a certainthreshold.Thus,
the largebox filter would only detecta personif they filled
eachhorizontal region (i.e., the whole box). Finally, if a
humanwasdetectedin oneof theboxes,aheadingwascal-
culatedbasedon the column numberin the centerof the
searchbox.Specifically, wedeterminedexperimentallythat
the lens hada field of view approximatelyequalto 42.74
degrees.Therefore,the following equationdeterminedthe
angle from the center of the field of view to the person.

heading = (columns / 2 – column number) *
(FOV / columns) (2)

The resultingheadingis in thesameunitsastheFOV.
For Alfred’s physical setup,we used320asthenumberof
columns,and 42.74¡as the FOV. Figure 6 shows a person
detectedat eachof thethreedistancesandthesearchboxes

Original Edge Images

Difference of
edge images

Figure 5.Person Locator -- Successive captured ima ges (left), calculated edg e images (mid dle), and one
diff erence ima ge (right).



that were used in the detection.
The secondmode--closepersondetection--was acti-

vatedafterdetectinganobstaclewhichmightbeahumanto
be served. The close-persondetectorcapturedtwo succes-
sive240x320images,performededgecalculations,andcre-
ateda singledifferenceimageall in thesamemannerasin
thefirst phase.In this phase,however, Alfred searchedonly
thecenterhalf of theimageto seeif enoughmovementpix-
elswerepresentto distinguishits forwardobstacleasaper-
sonandnot asa staticobject.Alfred returneda true value
only if the forward obstacle displayed significant motion.

Thepersondetectionalgorithmbasedon color worked
in two phases:filtering andtemplatematching.Thefiltering
passuseda trainedfuzzy histogramspecifyingthesetSkin
to filter the pixel valuesinto likely andunlikely faceloca-
tions.Thetemplatepassconsistedof oneor moreeye tem-
platesscannedover theregionsof theimageselectedin the
prefiltering stage.

To createthe fuzzy histogram,we took a seriesof pic-
turesof peoplein the areawhereAlfred wasto serve, and
theneditedthemto replaceall non-skincolor areasof the
picture with black. The programthen went througheach
picture,usingall non-blackpixelsto generatethefuzzy-his-
togram.For all non-blackpixels the imagecolor the train-
ing program normalized them by using equation (3),

(3)

where are the threecolor compo-

nents found in the original 320x240 color images,and

arethe threenormalizedcolors.The pro-

gramthenusedther andg values(b valuesweretoo noisy)
to index into a 32x32histogramandincrementthe appro-
priatecell. This sameprocedurewasfollowedfor theentire
testsetof images.Theprogramthenlocatedthefinal histo-
gram’s largestvalue, and divided eachof the cells in the
histogramby thatvalue,scalingthehistogramvaluesto the
range[0, 1]. Wecanconsidertheresultinghistogramto bea

fuzzy membershipsetfor pixelsbelongingto the fuzzy set
Skin[14].

OncetheSkinsetis trained,wecanuseit to filter anew
imagefor skin tones.The computeraccomplishedthis by
normalizingthe color of eachpixel usingequation(3) and
thenindexing into theappropriatecell of theSkinhistogram
to transformtheimageinto skin tonemembershipvalues.It
thenreducedthenew imageby a factorof four in eachaxis
to speedup skin block detection.Using an appropriately
sizedblock, it locatedall potentialfaceregionsby compar-
ing the average skin membership value against a threshold.

If the averagewasgreaterthanthe threshold,the pro-
gram consideredit a possiblefaceand began the second
phaseof detection,templatematching.The templatewas
createdby croppinga testimagedown to ablock thesizeof
apair of eyesandthenshrinkingthemby a factorof four in
eachaxis so that they would matchthe shrunkimage.By
runningthetemplateacrossthetophalf of thehypothesized
head,the programcalculatedthe sumof the squareof the
differencesof thepixel valuesin theimageandtemplate.If
this valuewaslessthenapresetthresholdtheareawascon-
sideredto be a person,andthe programreturnedthe hori-
zontal location of the person in the image.

To increasetheaccuracy of thealgorithm,we usedtwo
different head sized blocks, and two correspondingeye
templates.Using two different sized templateshelpedus
ensurethat peopleat different distancesfrom the camera
could be found reliably. Note that in this implementation
the algorithm stoppedonce it found a likely candidate,
ratherthansearchingfor all possiblecandidates,in orderto
reducecomputationtime.SinceAlfred only neededonetar-
get to head towards, this decision worked well.

To combinethesetwo independentalgorithmswe used
the following rule: if only oneof the two person-detection
methodsfounda person,therobotwould follow thatresult,
else if both of the two methodsfound a person,then the
robot would usethe face-detectionmethodas it tendedto
giveamoreaccurateheading.As thetwo methodsarecom-
plementary--thefacedetectionwill work whena personis
standingstill, while the motion detectionwill work if the
person’s faceis not detectable--thiscombinationprovided
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Figure6 .Distance Finder – Close size search box appr oximatel y 1.3m away (left), medium size search box
~2.5m away (mid dle), and far siz e search box ~4m away (right).



better performance than either method by itself.

5.3.3 Experiments and resultsDuring the final roundof
thecompetition,Alfred loggedimagesfor a 15-20minutes
portion of its time serving in the conferencehall. This
involved approximatelyeight interactions.The movement-
basedpersonlocatorloggeda total of 15 images,correctly
detectinga personat a proper distanceand heading12
times;correctlydetectinga personat an improperdistance
and heading1 time; incorrectly detectinga person1 time
whenno personexistedin theimage;andnot detectingone
personwhenit shouldhave.Theresultwasasuccessrateof
80%. The closepersonidentifier logged31 total images,
correctly identifying the forward obstacleas a person22
times and incorrectly identifying it as a person9 times.
Thus, the successrate for the close-humandetectorwas
approximately71%. (Note, the close-persondetectoronly
logged an image upon a detecting a person.)

As regardsthehistogram-baseddetection,in theSwar-
thmoreEngineeringbuilding wherethe algorithmwasini-
tially tested,it performedsuccessfullyover 90% of the
time. Upon arriving at the roboticscompetition,however,
thesystemexperiencedseveraldifficulties.First, thecreme-
coloredwalls weresimilar enoughto skin toneto appearin
the probability histogram.This problemwascompounded
by the lights in the conventioncenterwhich castshadows
on thewalls thatcould fool theeye templateat certaindis-
tances.Also, theconventioncenterlighting usedlight bulbs
with two differentspectrumsthat alternatedin their cover-
ageof theroom.Thewide variancebetweenthespectrums
of the different typesof light would throw off the person
detectionunlessthehistogramwastrainedwith a largedata
set.We took over 50 training imagesin a variety of loca-
tions aroundthe convention center in order to provide a
robust training set for the fuzzy histogram. When we
logged images in the final round of judging, the robot
detectedfour different peopleusing the histogram-based
skin detectionalgorithm.Of thesefour, threewerecorrect
detections,while thefourthwasawall, for asuccessrateof

75%. The small numberof detectionswas due to the fact
thatwhenAlfred waslogging imagesfewer peoplewereat
the reception and paying attention to the robots.

5.4 Recognizing people
Color andtexture histogrammatchingwaschosenfor

personrecognition,usingthe standardhistogrammatching
criteria described in [12]. Alfred’s recognition system
focusedon thecolorandtextureof clothing,asthephysical
placementof the cameraallowed Alfred’s field of view to
seeonly the torsoportion of a persononcethe personwas
conversingwith therobot.Wedecidedto usebothcolorand
textureto increasethesizeof thesearchspacesincewehad
to dealwith arbitrarycolorsand textures,unlike the work
describedin [13] where peopleof interestwore specific,
differentiable colors.

5.4.1 Algorithms & theory Alfred attemptedrecognition
whenever he enteredthe Servebehavior of the FSM and
subsequentlydetectedacloseperson.Alfred capturedasin-
gle 240x320imageandcroppedthe imageto includeonly
themiddle third so thatextraneouscolorscorrespondingto
theenvironmentsurroundingthepersonof interestwerenot
includedin the imageusedfor processing.A texture image
wascreatedfrom the RGB imagebasedon threedifferent
propertiesof calculatededgesin the color image.The red
bandof thetextureimagecorrespondedto edgeorientation,
in which orientationsfrom 0 to 180degreeswereassigned
valuesfrom 0 to 255accordingly. Similarly, thegreenband
of the texture imagecorrespondedto the amountof con-
trast,which is characterizedby edgemagnitudes.Last, the
bluebandcorrespondedto coarseness,which is definedby
edgedensity, or thenumberof surroundingedgepixelsin a
5x5 area.Together, they createan imagewith RGB values
that can be manipulatedusing histogrammatchingin the
samemannerasthe original color image.Exampletexture
images are shown in Figure 7.

The three-dimensionalhistogramsare comparedby
addingto a running total for eachcomparison.Eachaxis,

Figure7 .Person Recognition – Original image (far left), calculated texture image (left), texture band corre-
sponding to edg e orientation (mid dle), te xture band corresponding to edg e magnitude (right),

and te xture band corresponding to edg e density (far right).



red,green,andbluearedividedinto 8 buckets,sothatthere
are512bucketsin eachhistogram.Every pixel in theRGB
imageis put into a bucket correspondingto the amountof
red, greenand blue it contains.A histogramcomparison
consistsof comparingeachof the buckets to the corre-
spondingbucket in the other histogramand adding the
lower of the two valuesto the total. The higher the total
value, the closer the match.

Thecomparisontook placeby dividing both theorigi-
nal color imageandthecalculatedtexture imageinto three
equalhorizontalregionsto distinguishdifferentareasof the
torso. In total, eachpersonis definedby six histograms
which are stored in a dynamically-createddatabaseto
whichAlfred addsthroughoutthetimeheis serving.When-
ever a personis served,Alfred goesthroughthesamepro-
cessof capturingtheir image,creatingthe six histograms,
andthensequentiallycomparingthehistogramsto all those
currentlyin thedatabase.Alfred returnsthebestmatchand
a level of certaintyas to whetherhe believes that he has
served thatpersonbefore.Threelevelswereused:0 meant
no bestmatchwas found, 1 meantan unsurematchwas
found, and 2 meant a confident match was found.

5.4.2 Experiments & resultsA test run for the recogni-
tion systemconductedbeforethe preliminaryroundof the
competition yielded the following results on 7 subjects,
with a total of 20 testpicturestaken;Alfred determinedthe
correct best match 13 times; an incorrect best match 2
times; correctly found no good match1 time; and incor-
rectly found no bestmatch4 times.Thus,the successrate
for therecognitionsystemwas70%.It shouldbenotedthat
in this test the subjectswereall awareof whenthe Alfred
was capturing test images.This allowed Alfred to take
accurateimagerepresentationsof the subjects,which was
not alwayseasyto accomplishin thedynamicenvironment
of the competition’s final round.

During the preliminary judging round, the robot cor-
rectly identified the one judgewho interactedwith Alfred
twice.Likewise,eachof theotherjudgesreceiveda unique
namefrom the robot. Alfred also correctly identified the
wall twice whenpeoplemovedout of thecamera’s field of
view as Alfred took their picture.

In the final round, most people interactingwith the
robotseemedto avoid thecamera.Thus,Alfred took many
picturesof thewall andclassifiedthemasoneof two labels.
It did correctlyidentify two of therobotteammemberswho
stooddirectly in front of the robot.However, it alsoincor-
rectly mistook one memberof the audiencefor another
becauseboth werewearingsimilarly coloredand textured
shirts.Sincetherobotaskswhetherit got the identification
correct,thisactuallygave it achanceto beapologeticabout
the mistake.

6 Future directions

6.1 Navigation and integration
AlthoughtheFinite StateMachineworkedwell, in the

future a less-rigidmodel would be better. A subsumption
architecturewould enabletherobotto exhibit a muchmore
dynamicsetof behaviors thatcouldrespondmorefluidly to
events (such as being trapped in a group of people).
Although this approachwill probablyrequiremoredevel-
opment time, we believe it will be worth the effort.

6.2 Speech and personality
Thereareseveral modificationsto the speechandper-

sonality systemthat we want to implementprior to next
year’s competition. First, we intend to implement some
methodof noisecancellationperhapsby usingan adaptive
noisecancellation(ANC) filter [1]. Adaptive filters allow
only the desiredsignal to be processedandareconstantly
self-updatingto accountfor environmentalchanges.Two
algorithmsthat can be usedto implementadaptive filters
areleastmeanssquares(LMS), which is robustandeasyto
implement,andtherecursive leastsquares(RLS), which is
fasterbut its convergenceis not reliable.Two microphones
working simultaneouslyareusedin ANC; oneis unidirec-
tionalwhile theotheris omni-directional.Thenoiseinput is
from the omni-directionalmicrophoneand this signal is
passedto theadaptive filter. Theunidirectionalmicrophone
would thenbeusedto recordthesubject’sutterancesandan
adaptive noise cancellationis performedon it with the
adaptive filter. The error signal or noise is thus removed.

A secondmodification that we intend to implement
next yearis to enablethespeechprocessingsystemto adapt
to a situation. If there is a lot of backgroundnoise, for
example,Alfred might listen lessandjust make one-sided
conversation.

Finally we also intend to implement some auditory
speaker-recognitionfeaturesto supplementthe visual per-
son recognitionoutput from the vision system.A crude
implementationof this would be to have eachguestsaya
particularphrasethe first time we meetthem,and extract
uniquefeaturesfrom their speechwaveform that would be
storedas their voice template.When vision reports later
thatapersonhasbeenrecognizedwewouldconfirmthisby
askingthepersonto repeatthesamephraseagain, to carry
out the template recognition.

6.3 Vision system
The high-level vision processingwas relatively accu-

rate,but wasoftennot fastenoughto beeffective in therap-
idly-changing environment experienced in a crowded
exhibition hall. A persondetectedat onetime maymove to
a completelydifferentlocationby thetime thatAlfred pro-
cessesthe image information and navigatesto the calcu-
lated destination. Similarly, the timing involved in



capturingimagesto be usedin the recognitionsystemwas
vital in order to be accuratelyassessingonly thosecolors
andtexturesassociatedwith theperson,andnot thoseasso-
ciatedwith the backgroundof the exhibition hall. There-
fore, a moreusefulsystemwould have the ability to track
peoplein real time sothatonly relevant informationis pro-
cessedand updateddynamicallyalong with the changing
behavior of the humansto be served. Overall, the system
wasvery reliableandperformedwell in smaller, morecon-
trolled environments.In order to make the systemmore
robust, a methodfor continually updatingthe information
andfor properlysegmentingtheimageto includeonly rele-
vant information must be added.

With respectto theblob detection,thecolor basedbin
countermethodis a fastandreliablemethodof blob detec-
tion in ahomogeneousilluminationenvironment.TheRGB
boundis suitablefor bright colors saturatedin one of the
colorbands,but if detectionof “mixed” colorsis needed,an
approachusinghistogrammatchingwould be moreappro-
priate.Theuseof self-similarlandmarksturnedout to bean
excellentchoice,andfuture work may want to incorporate
the useof bar codesto provide morespecificnavigational
information [10].

Finally, the fuzzy histogram-basedmethod of face
detectionturnedout to be a good choice.Futurework in
this areawill be to combinethis prefilterwith active track-
ing techniquesand better structuralmatching techniques
than a simple template.

6.4 New capabilities
Basedon our competitionexperienceand our experi-

encewith Alfred in a varietyof situations,thereareat least
three new capabilitiesthat we believe a truly successful
waiter robot needsto possess,andwhich will be the main
focus of our work for the 2000 competition.

Thefirst of theseis theability to tracka personthat it
trying to serve from at least4-5 metersaway. This ability is
necessaryin order to avoid the situationwhere the robot
headsin a direction,only to find that thereis no onethere
when it arrives. It would also enablethe robot to demon-
strate dynamic adaptability to its environment.

The secondnew ability is that the robot needsto be
ableto adaptto the sensornoiselevels in its environment,
particularlywith regard to speech.As notedabove, a robot
waiter needsto know both whenit canbe understoodand
when it canunderstandothers.Only thencan it derive an
appropriate interaction for a given situation.

Finally, a robot waiter needsto display more biomi-
metic behavior--mimicing human reactions physically--
than Alfred could. Small characteristicssuchas eyes that
track the personbeingserved, the ability to raisea tray up
anddown, or theability to turn its headin responseto stim-
uli would make the robot’s interactionmore natural and
endow it with moreperceived intelligence.Someof these

capabilitiesappearedin theearlystagesat the1999compe-
tition, but bringingthemtogetherinto a single,robustrobot
structure is the challenge of the coming year.
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